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Abstract 
It is shown that the generally accepted set of Maxwell’s equations is incomplete and an 
additional law pertaining to the divergence of the induced electric field is required. A 
major implication is that standard derivations of the wave equations given in the literature 
are invalid.  It is also shown that the standard electromagnetic gauge is fundamentally 
flawed.   The scalar and vector potentials can be addressed without the standard gauge 
concept, which simplifies the standard formalism.  
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Introduction 
 
A review of the basic derivations leading to the standard electromagnetic wave equations 
reveals a number of errors. These errors and the revisions required to correct the basic 
formalism are the subject of this paper. The present section lists the basic Maxwell’s 
equations and provides an outline of the standard wave equation derivations for later 
reference.  Subscripts and superscripts are used in an attempt to provide precision to the 
definition of the key variables. Additional justification for some of the notation used here 
will be provided in the course of the paper.  
 

S
CE ρ/ε  .      (1) 

  CE 0  .      (2) 

    B 0  .      (3) 
     IE  - B/ t    .                      (4) 

CT IB μ J με E / t με E / t        .   (5) 

 
ε  is the electrical permittivity and μ  is the magnetic permeability.   
Eq. (1) is Gauss’ law for a static, or quasi-static (field fluctuations are transmitted 
instantaneously) Coulomb field S

CE  generated by a Coulomb charge distribution ρ.  It is a 

consequence of the inverse square law of the Coulomb field of a point charge.   Eq. (2) 
reflects the fact that the general Coulomb fields, including static and dynamic fields, are 
conservative and can be expressed as the gradient of a scalar Coulomb potential, 

C CE φ  . (In the foregoing, CE generally refers to dynamic fields.)  Equation (3) 

states that B is solenoidal. Equation (4) is Faraday’s law.  Given the magnetic vector 
potential, A, where AB  , it follows from Eq. (4) and the assumption that A is the 
sole source of IE , that IE A/ t    . 

    
Eq. (5) is obtained from Ampere’s circuital law.  The right hand side is the sum of true 
currents, TJ  and the displacement current, DJ . DJ  is generally the sum of contributions 

from time derivatives of CE and IE . Self-consistency requires a solenoidal net current 

source (sum of TJ  and DJ ) for B.  

 
In the standard derivation for the wave equations in terms of the potentials, one uses A 
and Cφ  in Eq. (5), to obtain,  

 
2 2 2

T CA ( A) A μJ με φ / t με A / t               (6) 

 
Rearranging terms, 
 

  2 2 2
C T( A με φ / t) A με A / t μJ            .   (7) 
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The two terms in parentheses on the left hand side of Eq. (7) are assumed to be 
independent and unrelated, with A  treated as indeterminate. The rationale is that, 
since AB  , any gradient function can be added to A without affecting B.  If 
somehow the left hand side could be set to zero, Eq. (7) would represent an 
inhomogeneous wave equation with source term, TJ . The conventional approach for 

obtaining a wave equation from Eq. (7) invokes the electromagnetic gauge which 
transforms the laboratory system of variables to new variables so that the left hand side of 
the transformed version of Eq. (7) is zero (the Lorenz condition). More specifically, the 
procedure involves application of the gauge transformation function,ψ , such that  
 

    'A A ψ        (8) 
 and  

    '
C Cφ φ ψ / t   .     (9) 

 
These transformations allow arbitrary alterations to the variables without affecting the 
total electric field, E.  It is readily seen from Eqs. (8) and (9) that 

 
    ' '

C I C IE E + E = E E  ,    (10) 

 
where C CE φ  , IE A/ t    , ' '

C CE φ  , and ' '
IE A / t    .   

  
To obtain the wave equation, first substitute Eqs. (8) and (9) into the left hand side of Eq. 
(7), and rearrange to give, 
 

' ' 2 2 2
C( A με φ / t) = ( A με φ / t - ψ+με ψ / t )               .  (11) 

 
 

One obtains the Lorenz condition,  
  

    ' '
C( A με φ / t)=0      ,    (12) 

 
from Eq. (11), by selecting the functionψ  such that its values in time and space give zero 
for the sum of terms in parentheses on right hand side of Eq. (11), i.e.,  
   

2 2 2
Cψ ψ / t ( A φ / t )         .    (13) 

 
If we now return to Eq. (7), and apply Eqs. (8) and (9), and the Lorenz condition (Eq. 
(12)), we obtain, 
  

    2 ' 2 ' 2
TA  με A / t +μJ =0    .   (14) 

 
Eq. (14) is the inhomogeneous wave equation for the transformed vector potential 
(primed variables). 
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To complete the task of solving for the total field E, one needs the corresponding scalar 
wave equation in the transformed variables. This requires the dynamic form of Gauss’ 
law, which is derived from the total electric field, 
 

    ' '
C IE E E  .      (15) 

 
The key step here is to assume Maxwell’s Eq. (1) holds for the total field, E.  So, 
inserting Eq. (15) into Maxwell’s Eq. (1) gives the familiar result, 
 

    ' '
C I(E E ) ρ/ε   .     (16) 

 
Note that Eq. (16) must also hold for the unprimed (untransformed) variables since it 
involves the sum of the two fields. 
 
Expressed in terms of potentials, Eq. (16) becomes, 
 

    ' '
C( φ A / t) ρ/ε       .    (17) 

 
Inserting the Lorenz condition (Eq. (12)) into Eq. (17) gives the scalar wave equation, 
 

    2 ' 2 ' 2
C Cφ -με φ / t ρ/ε.         (18) 

 
The curl and time derivative of the solution for (14) gives B, and '

IE , respectively.  The 

gradient of the solution for Eq. (18) gives '
CE . Summing '

CE  and '
IE  completes the task 

of obtaining the total electric field E in Eq. (15), which is independent of the choice of 
gauge function. 
 
The preceding outlines the standard formalism for the elementary derivation of the wave 
equations. The remainder of this paper addresses questions regarding the validity of these 
standard results and offers alternatives that correct a variety of errors. 
 

The Missing Maxwell Equation 
 
The first item that we address is the missing Maxwell equation in the standard formalism.  
Our approach maintains the distinctions between the different physical variables such as 
E, IE , and CE . While this leads to a proliferation of variables, it provides more clarity. In 

the literature, the same symbol, E, is used for all electric field variables, which obscures 
the physics and leads to errors, as we will illustrate (see also, the Appendix). The same 
problem exists with the various components of the vector potential. 
 
The fact that the basic set of Maxwell’s equations is incomplete is demonstrated by an 
error in the standard derivation of the wave equation for the electric field. The 
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conventional approach proceeds as follows (see, for example, Panofsky and Phillips, 
Chapter 11 [1], Jackson, Chapter 7 [2] , Feynman et al, Chapter 20 [3] ): take the curl of 
both sides of Eq. (4), which gives, 
  

2
I I IE ( E ) E  - ( B)/ t         .   (19) 

 
From Eq. (19) and Maxwell’s Eq. (5) we have, 
 

             2 2 2 2 2
I I T C I( E ) E  μ J / t με E / t - με E / t           .  (20) 

 
The final step invokes Maxwell’s Eq.(1) to justify setting IE 0  . Treating the first 

two terms on the right of Eq. (20) as external source terms gives inhomogeneous wave 
equation, 
.  

        2 2 2 2 2
I I T CE - με E / t μJ E / t       .    (21) 

 
(We derive Eq. (21) later from the vector potential wave equation.) Maxwell’s Eq. (1) is 
usually invoked again at this point [1, 2, and 3] to provide the standard proof, using 

IE 0  , that the vector IE  is transverse to B and to the direction of wave propagation. 

 
Glossing over distinctions among variables is the likely explanation for the improper use 
of Maxwell’s Eq.(1) to set IE 0  . The variable IE  refers to an induced field, which 

is obtained from the vector potential, while Maxwell’s Eq. (1) holds only for the static 
Coulomb field, with the Coulomb charge density as its source term. 
 
It follows from this example that the standard wave equation for IE  has yet to be derived 

properly. One needs an expression for IE   for a valid derivation.   Another direct 

indication that something is missing from the basic set of equations is that the dynamic 
form of Gauss’ law (Eq. (16)) is supposed to give an expression for the source density 

IE  in the presence of a dynamic Coulomb field, while no such expression exists for 

the static, quasi-static, or charge free cases. 
 
Given that the validity of equation (21) is not in doubt, the missing Maxwell equation 
must be  
 

IE 0  .     (22) 

 
More complete justifications for Eq. (22) are provided in the following. We will also 
show that Eq. (22) does not conflict with the correct form of the dynamic Gauss’ law. 
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Vector Potential  
 
The general expression for the vector potential, GA , due to a general current density, GJ , 

is derived, for example, in Panofsky and Phillips [1], 
 

    G
G

J (r')μ
A dv '

4π r-r'
  .     (23) 

 
A key point here is that GA  is only defined within an arbitrary function that has a 

vanishing curl. As shown in Panofsky and Phillips [1], any three dimensional vector is 
fully characterized by giving its curl and its divergence. Generally, if  
 

     F K  ,      (24) 
 
so that K is solenoidal, and,  

F=s ,     (25) 
 

it follows that F may be expressed as, 
 

    FF φ L   ,     (26) 

 
where,  
     
   

    F

1 s(r')
φ dv'

4 r-r'
  ,     (27) 

and, 
 
     
  

    
1 K(r')

L dv '
4 r-r'

  .     (28) 

 
 
Consider a general vector potential, GA  where GA B  .  An expression for 

GA  (or Aφ ) is required for complete characterization of A, so that, generally,  

 
    G A AA φ L   ,    

 (29) 
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where  
  

A

1 B(r')
L dv '

4 r-r'
  .     (30) 

 
Similarly, for IE , we have   IE  - B/ t    , and, allowing the possibility of a source 

potential, Iφ , the complete IE  is given by, 

 
    I I IE φ L   ,     (31) 

 
where, invoking Maxwell’s Eq. (4), we have 
 

I

(- B(r')/ t)1
L dv '

4 r-r'
 

  .    (32) 

 
Maxwell’s Eq. (4) (the original Faraday’s law) gives only the curl of IE . The divergence 

of IE  is also required in order to fully characterize this variable. In other words, the 

variable IE  is undefined so long as IE  remains undefined. So, we have returned here 

to the case of the missing Maxwell equation (Eq. (22)). If IE  were arbitrary, a broad 

range of commonplace physics and engineering problems involving induced fields could 
not be addressed.  As discussed in the example of a closed circular loop in the Appendix, 
approximately a century and a half of experience with applications of the Faraday law 
indicates that no point sources exist for IE . Consequently, the required equation for a 

closed loop of current is IE 0    (Eq. (22)).  This equation must be added to the usual 

statement of Faraday’s law (Maxwell’s Eq. (4)) for a complete expression of Faraday’s 
law. 
 
As reviewed in the Introduction, the standard formalism treats GA   as completely 

arbitrary.  In view of the above discussion of the Faraday law, this approach is no longer 
acceptable.  Consider the net vector potential A. Since I( A)/ t= E 0     , it follows 

that A is restricted to a time independent function.  Consequently, when Eq. (22) 
applies,  
 

    ( A)/ t 0    .     (33) 
 
How is Eq. (33) reconciled with special relativity where the Lorenz condition (Eq. (12)) 
is generally applied to both A and 'A ? Again, we will show the answer lies in preserving 
distinctions among variables.  
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Alternative Approach to the Wave Equations  
 
Retarded Fields 
 
Among the key equations needed for our purposes are the retarded Coulomb and vector 
potentials of a moving charge. These potentials deal with the essential features and thus 
provide a more substantive basis for the development of the wave equations than that 
used in the standard formalism. A further advantage is that these equations are consistent 
with the requirements of special relativity.  The expressions for the Coulomb and vector 
potentials given in Feynman et al [3] for a charge moving along the x axis at velocity v 
are: 
 

  C 1/22
2 2 2 2

2 2

q
φ =

(x-vt)
4πε 1-v /c +y +z

1-v /c

 
 
 

,    (34) 

and  

  
2

x y1/ 22
2 2 2 2

2 2

(q/c ) v
A ; A = A 0.

(x-vt)
4πε 1-v /c +y +z

1-v /c

z 
 
 
 

  (35) 

Recall that these equations reflect the fact that the potentials and vector fields at a point r 
are given by the moving charge and current located at a point ' 'r (t )  that is different from 

the present source position 'r (t)  because of the finite speed of light; in these cases 
't'= t- r(t)-r (t) /c . The term 21 (v/c) originates from the Lienard-Weichert expression 

for the potential and reflects the apparent elongation of the charge in the direction of 
motion due to retardation effects [3].  
 
For later reference, the concept of retarded fields requires a modification to the general 
expression (Eq. (23)) for a general vector potential GA  due to a general current source, 

' '
GJ (r ,t ) . The “retarded solution” version [1,2] of Eq. (23) is: 

   
' '

'G
G '

[J (r , t )]μ
A (r,t) dv

4π r(t)-r (t)
  ,    (36) 

 
where the source term in square brackets is evaluated at time 't < t . 
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The Lorenz Condition 
 
Our approach relies upon Eqs. (34) and (35) to obtain basic relationships among the 
variables. Eqs. (34) and (35) replace the vague notion of “dynamic fields” with precise 
definitions.  It is assumed here that “dynamic fields” is synonymous with retarded fields.  
The same relationships hold for any charge distributions, in view of the principle of 
superposition for sums over distributions of charges iq  and distributions of current 

elements, i iq v . Note that 2
x CA vφ / c . 

 
Eq. (35) is the vector potential associated with a moving charge and is therefore 
associated with an element of the true current, TJ . We now label this true current 

component of the vector potential as TA , where generally T TX TY TZA =A i+A j+A k  ( i, j, 

and k are the unit vectors). There are further contributions to the net vector potential, A, 
from displacement currents, which will be considered when we discuss the vector wave 
equation. For now, we examine only the relationships between the variables pertaining to 
true currents.  The first item is that the relation between the Coulomb field due to a 
moving charge and the vector potential due to the current due to that moving charge is 
now expressed as 2

T CA = vφ /c . 

 
Next, if one computes the divergence of TA , and the time derivative of Cφ , one obtains, 

 

  

    
 

T 3/22
3/222 2 2

2

-q v (x-vt)
A

x-vt
4πε c 1- v/c + y + z

1- v/c

 
 
 
 
 

,   (37) 

 
and 
  

  

    
 

C
3/22

3/22 2 2
2

φ q v(x-vt)

t x-vt
4πε 1- v c + y + z

1- v/c




  
 
 
 

.   (38) 

 
In this case, TJ  is a non-solenoidal true current (because it is due to a single moving 

charge) and T
T I( A )/ t= E 0      as the reader can verify by taking the time 

derivative of Eq. (37). 
 
Comparing Eqs. (37) and (38) shows 
 

    2
T CA ( φ / t) / c 0     .    (39) 
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Eq. (39) closely resembles the Lorenz condition, Eq.(12) which is used to obtain the 
primed scalar wave equation (Eq. (18)). There are important differences, however: i) 
unlike the Lorenz condition, which holds for the net primed vector potential, A' , Eq. (39) 
applies to only one component of the net vector potential A, so it does not violate Eq. 
(33);  ii) Eq. (39) is an equation, not a “condition” to be met by adjusting variables; and, 
iii) Eq. (39) is in covariant form in the unprimed variables, which contrasts with the 
Lorenz condition. The Lorenz condition does not apply in the unprimed variables, a fact 
that is generally overlooked in comparisons with results of special relativity.   
 
The fact that an equation that is similar to the Lorenz condition can be obtained in the 
unprimed variables is well known. For example, Panofsky and Phillips [1] apply the 
continuity condition, TJ ρ / t 0     (which refers to a true current in a finite length 

conductor, with a time varying charge density at the end). They then apply Eq. (36), 
giving (without subscripts),  
 

 
' '

'T
T '

[J (r , t )]μ
A (r,t) dv

4π r(t)-r (t)
   (40) 

  
along with an analogous expression for the scalar potential,  

 
' '

'
C '

1 [ρ(r , t )]
φ (r,t) dv

4πε r(t)-r (t)
  ,  (41) 

to show that Eq. (39) is a result of the continuity condition.  What is generally overlooked 
it that the vector potential in this case is the component related to the true current rather 
than the net vector potential.  We use subscripts to preserve the distinctions, which, as we 
have stressed, makes all the difference.   
 
We obtained Eq. (39) without invoking the continuity condition; however, if one views 
current in a wire as the flow of a line of charges with drift velocity v over a stationary 
line of opposite charges, then Eqs. (34) and (35) can be viewed as a similar effect where 
the dynamic potentials are related to the development of an excess charge at the end of 
the conductor.   
 
A final point is that some of the more subtle features of relationships among component 
variables tend to be ignored in the standard approach. Eq. (39) shows, for example, that 
in the presence of time varying Coulomb fields, every point in space with non-zero 

Cφ / t   acts as a point source contribution to TA (see Eq. (29)). While this component 

of TA  cannot contribute to a magnetic field B, its time variation does contribute an 

induced field T
IE  which, in principle, can be detected by the force it produces on charged 

particles.   
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The Dynamic Gauss’ Law 
 
In the standard approach, the general expression for the divergence of the combined 
electric fields in the presence of dynamic Coulomb fields is derived as shown for Eqs. 
(15) and (16). All approaches simply apply the static form of Gauss’ law (Maxwell’s 
Eq.(1) ) to the sum of the dynamic variables, CE and IE , giving the expression,   

  
    C I(E +E ) ρ / ε  .     (42) 

 
No conceptual basis for the new dynamic variables is provided.  Despite this, Eq. (40) is 
generally accepted throughout the physics literature, presumably because it provides the 
standard gauge transformed scalar wave equation (Eq. (18)).  Without it, one cannot 
obtain the total electric field, E.  We now show that Eq. (42) and its equivalent, Eq. (16) 
are incorrect. 
 
First, assume for the moment that Eq. (40) is valid.  The original S

CE  (Eq.(1)) and 

IE   (Eq. (22)) are not required to apply in Eq. (42).  Instead, the divergence of the 

sum of the two fields at a given point in space is equal to the charge density at that point.   
This conflicts with the Faraday law: the complete Faraday law must always apply, so Eq. 
(22), IE 0  , always applies. Consequently, Maxwell’s Eq. (1) holds for both the 

static and dynamic Coulomb fields so that there is no need for the concept of dynamic 
fields if Eq. (42) is correct.  The source of the difficulty is that the standard assumption 
that Maxwell’s Eq. (1) applies to the sum of CE and IE  is simply invalid. 

 
A proper derivation of the dynamic form of Gauss’ law is available from the retarded 
field expressions for Cφ and TA (Eqs. (34) and (35)). For the sake of brevity we do not 

include the rather lengthy equations that result from the straightforward derivatives, but 
give only a summary of the results, which the reader can readily verify.  If one obtains 

CE  from - Cφ  and T
IE  from TA / t  outside the singularity, one finds that CE 0   

and T
IE 0  .   

 
On the other hand, if one now uses Eq. (34) and (35) to compute the divergence of the 
sum of these two vectors outside the singularity, one obtains, 
 

     T
C I(E + E ) = 0 .     (43) 

 
In order to include the singularity at the location of the charge, q, at (x-vt), y, z, we use 

the fact that the correction term 21 (v/c) is only valid distances larger than the size of 

the charge [3]. Retardation effects cannot exist in the immediate vicinity of the charge, so 
the fields there follow the static inverse square law for S

CE . The result is a correct 

expression for the dynamic form of Gauss’ law, 
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    T
C I(E + E ) = q/ε .     (44) 

 
Applying the principle of superposition for a distribution of charges as in the static case 
gives the more general expression,  
 

    T
C I(E + E ) =ρ/ε .     (45) 

 
This result reveals a previously unrecognized feature of the dynamic Gauss’ law, namely, 
that it holds for the dynamic Coulomb field and for only one component of the induced 
field, T

IE . There are no contributions from the induced fields generated by the two 

displacement currents.  
 
Returning to the topic of variable labels, note that Maxwell’s Eq. (2) holds for general 
Coulomb fields. Thus, it applies to both the static S

CE and to the dynamic CE described 

here. 
 
The Scalar Wave Equation 
 
The correct form of the dynamic Gauss’ law reveals a flaw in the gauge approach. The 
key step in obtaining the scalar wave equation relies on the incorrect form of Gauss’ law, 
(Eq. (16)). We now see that there is no such difficulty with the unprimed variables and 
the correct version of the dynamic Gauss’ law.  
 
Rewriting Eq. (45),  

    2
C Tφ ( A ) / t =ρ/ε    .    (46) 

 
Applying Eq. (39) to Eq. (46) gives, 
 

    2 2 2 2
C Cφ φ / t / c ρ/ε      ,   (47) 

 
which is the scalar wave equation in unprimed variables. Eq. (47) is independent of the 
vector wave equation.  This contrasts with the results of the gauge approach, where the 
primed scalar and vector wave equations are actually meaningless by themselves. (For 
example, even in cases where actual Coulomb fields are absent, the gauge approach 
requires that one consider an imagined Coulomb field.)  Both primed equations are 
coupled because only the sum of the primed electric fields is accessible to laboratory 
testing. A further advantage of Eq. (47) and the vector wave equation (derived in the next 
section) over that obtained from the gauge approach is that they can legitimately be 
discussed in terms of the unprimed variables that can be measured directly or compared 
with results from special relativity.  
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The Vector Wave Equation 
 
We begin with Eq. (6), which is Maxwell’s Eq. (5) in terms of the vector potential, 
  

2
CT IA ( A) A μ J με E / t με E / t            .    (6) 

 
Eq. (6) shows there are three source terms for the net vector potential, A. To underscore 
the point that A is actually the sum of components, we consider each separately.  The 
component, TA , due to the true current has already been discussed. The explicit retarded 

field expression for the vector potential component due to the Coulomb displacement 
current can be written as 
 

    C
C

[ε E (r',t')/ t]μ
A (r,t) dv '

4π r(t)-r'(t)

 
  ,     (48) 

 
and the third component of A, due to the displacement current from the total induced 
field, IE , can be written as   

 

I
I

[ε E (r',t')/ t]μ
A (r,t) dv '

4π r(t)-r'(t)

 
  .    (49) 

 
 
The net vector potential is the sum of these three terms,  

T I CA=A +A +A .      (50) 

 
Since the source current for net A is solenoidal, the general criterion for ( A)/ t 0     
is satisfied. Taking the time derivative of both sides of Eq. (6), and employing 

( A)/ t 0    , gives the wave equation for the induced field, IE , 

 
2 2 2 2 2

CI I TE  - με E / t = μ J / t με E / t .           (51) 

 
Thus, with the present approach, one obtains exactly the same wave equation for IE as 

that obtained directly (Eq. (21)) from the basic set of Maxwell’s equations. As with the 
scalar equation, the vector wave equation holds for the unprimed variables.  This 
consistency check is not possible with the gauge approach since, by definition, the 
meanings of the primed variables differ from those of the unprimed variables.  
 
For completeness, we note that the corresponding wave equation for B is obtained from 
the curl of both sides of Eq. (6). Using Maxwell’s Eq. (2) and the fact that 

( A)=0   gives, 
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2 2 2
TB - με B / t = μ ( J ) / t      ,    (52) 

 
which is identical to that obtained directly from Maxwell’s Eqs. (2), (3), and (4). 
 
Another consistency check is that the solenoidal source terms in both Eqs. (51) and (52) 
generate the solenoidal vector fields, B and IE . The same is not true of Eq. (6) since both 

sides of Eq. (6) are solenoidal, regardless of A . On that topic, we have shown that the 
basic wave equations (i.e., Eqs. (49), (50), and the scalar wave equation (Eq. (47))) can 
be derived from the potentials without invoking an electromagnetic gauge. The correct 
wave equations are obtained for any time independent function for A . The reason can 
be seen from Eq. (29). A constant A  generates neither a magnetic field nor an electric 
field, so it is physically undetectable. It is physically meaningless. Furthermore, there can 
be no physical justification for the existence of such a term where solenoidal current 
sources generate continuous flow lines for A. So, the concept of a source term for A is 
physically meaningless, which requires A= 0 .  Equation (6) can then be written as,  
 

    2 2 2
CTA- A / t -μ J -με E / t      .    (53) 

 
As a final point, the present results reflect a general underlying physical principle: 
solenoidal current sources generate solenoidal fields so the statement that there are no 
monopoles for B, may be extended to include IE  and A. 

 

Reconciling with Special Relativity 
 
The direct incorporation of gauged (or transformed) variables into the equations for 
special relativity is not correct because one cannot equate primed and unprimed variables.  
We already noted that T CA = vφ , where is the component due to the true current,  and that 

the unprimed analog to the Lorenz condition is also expressed in terms of TA .  Bearing 

this in mind, if one re-examines the primed vector potential wave equation (Eq. (14)) it is 
clear that it also applies only to TA . The displacement contribution from the Coulomb 

field is removed in the gauge transformation process leaving a non-solenoidal source 
term and a wave equation for a non-solenoidal vector field. In other words, the primed 
net vector potential is the same as the component due to the true current, TA' A . Thus, 

the main result of the standard gauge in electromagnetism is a wave equation that is 
applicable to only TA .   Since the standard covariant expressions are based on the primed 

vector fields, it is clear that all such expressions actually refer to the TA component, 

rather than the net A.  Hence, simply changing the label of the A vectors in the special 
relativity equations to TA  corrects the misleading equations and removes the conflict 

between the present results and the requirements of special relativity. Reiterating, the 
present results show that Maxwell’s equations are consistent with A=0 , while the 
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relativistic equations are consistent with 2
T CA ( φ / t) / c 0     . 

 
A similar situation exists in the quantum mechanical treatment of electromagnetism. 
Feynman and Hibbs [4], for example, discuss the fact that a quantum mechanical 
formalism that incorporates the Lorenz condition is considerably more cumbersome than 
that using A=0 . So A=0  is generally assumed to apply. Again, the conflict 
between this requirement and special relativity is resolved by recognizing that the 
relativistic equations refer to TA  rather than A.  

 

Summary  
 
We have shown that much of the standard formalism of electromagnetism cannot survive 
the application of precise definitions to its variables. The key to addressing this problem 
is the inclusion of an additional equation to the basic set of Maxwell’s equations. This 
additional equation is required to complete the statement of Faraday’s law. With a 
complete set of basic equations, all the essential relationships needed for valid derivations 
of the wave equations can be obtained without an electromagnetic gauge.   
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Appendix 
 
In the present paper we attribute errors in the standard derivations of wave equations to 
the common practice of neglecting distinctions among key field variables.  Reference [5], 
describes similar errors in a variety of textbook analyses related to applications of the 
Faraday law.  This Appendix provides a simple illustrative example of such errors using a 
circular shell where no Coulomb fields exist. This example also serves to support several 
of the central points made in the main text. 
 
Consider a thin, conducting circular cylindrical shell of 1 meter diameter, with a loop 
resistance of 1 ohm, enclosing a uniform magnetic field which is increasing linearly in 
time so that the rate of change of flux (emf) is 1 volt (Figure 1).  (The shell is thin enough 
that skin effect can be neglected.)  What is the potential difference between points A and 
B?  
 
A common approach is to apply the Faraday law in the following manner: Using the fact 
that the line integral around any closed path is equal to the negative of the flux enclosed, 
one conventionally assumes: i) that no fields exist inside a good conductor and ii) any 
convenient path can be selected to give the field between points A and B. The simplest 
choice is a closed path that passes along a zero field circumferential segment from A to B 
inside the shell and exits the shell at B and follows the diameter back to A to close the 
loop. This loop encompasses half the area, so the non-zero field between A and B is 0.5 
volts/meter and the potential between A and B is 0.5 volts. If one considers the symmetry 
of the setup, however, this must be incorrect. 
 
The root of the problem is ignoring the distinctions between Coulomb fields and induced 
fields. Potentials are obtained from line integrals of Coulomb fields while emf’s are 
obtained from line integrals of induced fields. Furthermore, paths cannot be chosen 
arbitrarily: the induced fields, IE , actually form closed loops that are concentric with the 

conducting shell, (and inside the shell itself). Because perfect circular symmetry is 
assumed, there can be no induced charges, so there are no Coulomb fields; hence, there 
are no potential differences. So, there are no fields directed along the diameter between 
points A and B.  Furthermore, the fields inside the shell are not zero, so a 1 amp current 
will be generated. The final point is that the physics of the problem cannot described by 
the sum of IE  and CE as required in the gauge approach. 

 
This example also relates to requirement for a full characterization of IE  and the possible 

presence of a source term for IE in the absence of a Coulomb field. A source term implies 

a potential, Iφ (See Eqs. (24) through (28)). Thus, the line integral of IE  between any two 

points on the circular shell would include a contribution from the gradient of Iφ . The 

result would be an accumulation of charges at different points along the shell, which, in 
turn, would produce detectable potential differences. (A concrete example, consistent 
with the circular symmetry of the present example, is a source term for IE  along the 
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central axis of the shell.  This would produce a potential difference between the inner and 
outer surfaces of the shell.)  Such sources produce no effect on the total current, however, 
since the line integral of a gradient of Iφ around a closed circuit is zero.  The presence of a 

source term would yield deviations between predicted and measured potentials in a wide 
range of electromagnetic devices. In this case, one can fairly assume that the absence of 
evidence of a source term is evidence of its absence, so Eq. (22) must apply for closed 
current loops. 
 
 
 

x        x         x

x       x        x       x

x        x        x

A

B

 
Figure 1: Conducting shell enclosing a uniform, time-varying magnetic field. 

  
 
 
 


